

ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov

@NASAARSET

MERRA-2 Reanalysis

Pawan Gupta, Melanie Follette-Cook

(Based on Slides from Arlindo da Silva and GMAO Team)
Satellite Remote Sensing of Air Quality

September 19-21, 2017 University of California, Riverside

www.nasa.gov

Learning Objectives

By the end of this presentation, you will be able to:

- Learn about NASA MERRA Reanalysis data sets
- Learn to access data and tools for AQ applications

Why data assimilation?

- Models are useful, but have difficulty specifying emissions, microphysical processes, and transport leads to large uncertainties
- While there are a large number of aerosol sensors, there are still blind spots:
 - Measurements are usually vertically integrated
 - Diurnal cycle is not represented by polar orbiters
- Data assimilation can act as an integrator of model and observational information and a conveyor of past observations

What is reanalysis, and why do we do it?

What

- Relies on models to interpret, relate, and combine different observations from multiple sources
- A consistent reprocessing of Earth system observations using a modern, unchanging data assimilation system
- A successful reanalysis requires a good forecast model combined with bias-corrected and quality controlled observations

Why

- Produces multi-decadal, gridded datasets that estimate a large variety of Earth system variables, including ones that are not directly observed
- Has become fundamental to research and education in the Earth sciences

MERRA Reanalysis

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

- Long-term, model-based analyses of multiple datasets using a fixed assimilation system
 - –GEOS (Goddard EarthObserving System Model)
- The Modern-Era Retrospective analysis for Research and Applications (MERRA) provides data beginning in 1980 and runs a few weeks behind realtime
- MERRA-2 includes meteorology, stratospheric ozone, and aerosols at a spatial resolution of a 0.5° × 0.66° grid

GEOS-5 Reanalysis Activities

Name	Nominal Resolution	Period	Aerosol Data	Available	
MERRA-1	50 km	1979 – present	NONE	now	
MERRAero	50 km	2002 – present	MODIS C5	now	
Forward Processing for Inst. Teams	50 km	1997 - present	MODIS C5	In progress	
NCA	25 km	2010 – 2011	MODIS C5, MISR	Now	
MERRA-2	50 km	1979 – present	AVHRR, MODIS C5, MISR, AERONET	Summer 2015	
MERRA-2 Dynamical Downscaling	12.5 km	2000 – 2014	AVHRR, MODIS C5, MISR, AERONET	Q4 2015	

GEOS-5

Earth System Model

- Components coupling via the Earth System Model Framework (ESMF)
- Aerosol and chemistry radiatively coupled to GCM
- Applications
 - Seasonal forecasts
 - Weather and aerosol NRT forecasts
 - Reanalysis
 - Observing System Simulation Experiments (OSSEs)

Radiance Assimilation into MERRA

Figure 5 - Timeline of satellite radiance observations over the entire MERRA-2 period. Each bar is colored by instrument type and represents a satellite from which the instrument measured.

Aerosol Observing System

Sensor	Period	Remarks	
AVHRR*	1979 – 2002	PATMOS-x; NNR; Ocean Only	
AERONET	1999 – 2015	Ground-Based Stations	
MODIS Terra*	2000 - present	C5; NNR; Separate Land and Ocean	
MODIS Aqua*	2002 – present	C5; NNR; Separate Land and Ocean	
MISR	2000 – 2014	Bright Surfaces (albedo > 0.15)	

Total global monthly number of AOD observations (below), sensors marked with * multiplied by 10⁷)

GOCART in GEOS-5

- Based on the Goddard Chemistry, Aerosol, Radiation and Transport Model (Chin et al. 2002)
- Sources and sinks for 5 <u>non-interactive</u> species

- Convective and large scale wet removal
- Dry deposition (and sedimentation for dust and sea salt)
- Optics based primarily on OPAC

MERRA-2 Emissions

Table 1: Aerosol emissions databases (native temporal and spatial resolutions).

Aerosol Type	Source	Temporal Resolution	Spatial Resolution ^{a,b}
Dust^c Sea Salt Volcanic (SO ₂) Biogenic terpene	Wind-driven emissions w/? source Wind-driven emissions AeroCom Phase II (HCA0 v2) GEIA	Annual-mean climatology Model Daily Monthly-mean climatology	$0.3125^{\circ} \times 0.25^{\circ}$ Model Point-sources $2^{\circ} \times 2.5^{\circ}$
DMS Biomass Burning (SO ₂ , OC and BC) ^{d} Biomass Burning (SO ₂ , OC and BC) ^{e}	Lana et al. 2011 HFED QFED-2.4r6	Monthly-mean climatology Monthly-varying Daily	$1^{\circ} \times 1^{\circ}$ 0.5 $0.3125^{\circ} \times 0.25^{\circ}$
Anthropogenic SO ₂ and SO ₄ Anthropogenic OC and BC Ship (SO ₂ , SO ₄ , OC, BC) Aircraft (SO ₂)	EDGARv4.2 (Energy + Non-Energy) AeroCom Phase II (HCA0 v1) EDGARv4.1 and ? AeroCom Phase II (HCA0 v1)	Annually-varying Annually-varying Annually-varying Monthly-varying	$1^{\circ} \times 1^{\circ}$ $1^{\circ} \times 1^{\circ}$ $1^{\circ} \times 1^{\circ}$ $1^{\circ} \times 1.25^{\circ} \times 72$ -levels

^a Model = MERRA-2 time-step of 30 minutes with spatial resolution of 0.5° latitude \times 0.625° longitude.

 $^{^{}b}$ latitude \times longitude

^c Resolution is for source map (Ginoux et al. 2001); wind-driven emissions at model time-step.

 $^{^{}d}$ Streams 1-3; Y1979-Y2010

^e Stream 4; Y2010-onward

Observational Bias in AODs

Original MODIS AOD

Log(Tau550+0.01)Original MODIS

Bias Corrected AOD

MODIS Neural Net AOD Retrievals trained on AERONET

-3

-2

AERONET

-1

-4

Observing System Homogenization

In order to minimize spurious jumps due to relative instrument biases, MERRA-2 uses AERONET as a reference in a series of Neural Net Retrievals (NNR) based on reflectances from:

- MODIS Collection 5
- PATMOS-X AVHRR

MERRA-2 Aerosol Evaluation Highlights

Using Independent Observations

Attenuated Backscatter km⁻¹ sr⁻¹

Vertical Structure

Comparison to CALIOP

Aerosol Absorption

- Comparison of MERRA-2 Absorption Optical Depth (AAOD) with OMI retrievals
- Good agreement for African dust and smoke
- North American biomass burning underestimated according to OMI

PM_{2.5} (Total) Regional Climatology

Comparison with in-situ measurements after Buddy Check

PM_{2.5} by Species in the Northeast

- Relatively good agreement for sulfates
- MERRA-2 lacks
 nitrates altogether
- Underestimation of carbonaceous nearurban areas
- Too much dust
- Too much sea salt at coastal stations

MERRA -2 Webpage Tour

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

MERRA-2 Status

- MERRA-2 has officially been released. Data access through the GES DISC:
 - -http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl
 - -http://disc.sci.gsfc.nasa.gov/uui/#/search/%22MERRA-2%22
- The MERRA-2 file specification document is available at:
 - -<u>http://gmao.gsfc.nasa.gov/pubs/</u> under the tab Office Notes
- NASA tech memos documenting the MERRA-2 meteorological and aerosol validation exercise will soon be available at:
 - -<u>http://gmao.gsfc.nasa.gov/pubs/</u> under the tab *Technical Memoranda*

MERRA Tools

OpenDAP server

Model Data

Project or Mission	Description	Web Services
LDAS	GLDAS-2, NCA-LDAS, FLDAS, and GRACE-DA-DM	OPeNDAP
	GLDAS and NLDAS	GDS
MERRA		OPeNDAP
	MERRA Chemistry forcing	GDS
		OPeNDAP
	MERRA 2D products	GDS
		OPeNDAP
	MERRA 3D products	GDS
MERRA-2		OPeNDAP
	MERRA-2 2D products	GDS
		OPeNDAP
	MERRA-2 3D products	GDS
NOBM	NOBM daily and monthly	OPeNDAP

Science Focus Areas	Tools	Resources	About Us	
Atmospheric Composition	Giovanni	HowTo	Who We Are	
Water & Energy Cycles	MERRA Subsetter	Glossary	Citing Our Data	
Climate Variability	Data Rods for Hydrology	FAQ	Contact Us	
	DQViz	News		
	AIRS NRT Viewer	Gallery		
	OGC Web Map Service	Alerts		
	OPeNDAP and GDS			

MERRA-2 Data Access – GES DISC - Subsetter

Global Mean AOD Analysis

1980 - Onward

- Unique amongst its peers, the MERRA-2 reanalysis now includes an aerosol reanalysis for the modern satellite era (1980 – onward)
- Aerosols are coupled to the meteorological reanalysis (both radiatively and through emissions and loss processes)

Fires – July 2017

AOD Time Series Over CA

AOD Distribution Over CA

Pinatuba Eruption

- First aerosol assimilation to include major historic volcano events like El Chichón (1982) and Pinatubo (June 1991)
- Movie shows the co-evolution of gaseous SO₂ emissions from Pinatubo (left) and formation of the sulfate aerosol plume (right) as SO₂ is converted into particles
- SO₂(g) is from emissions inventories and unconstrained by assimilation. Sulfate aerosol AOD (right) is impacted by the assimilation of total aerosol AOD

Summary

- MERRA-2 provides the first integrated aerosol-meteorology reanalysis for the satellite era
 - -Aerosols impact the meteorological "first guess"
- Compared to MERRAero, MERRA-2 adds AVHRR, MISR and AERONET data to MODIS
- Caveats:
 - –Monthly mean biomass burning emissions inadvertently used during 2000-2010
 - Due to forward processing constraints, MISR/AERONET have been dropped around mid/late 2014.
 - -MERRA-2dd: 12.5 km downscaling coming up in 2016

7 km GEOS-5 Nature Run Global Mesoscale Simulation

GEOS-5

Earth System Model

Components coupling via the Earth System Model Framework (ESMF)

Aerosol and chemistry radiatively coupled to GCM

Applications:

- Seasonal forecasts
- Weather and aerosol NRT forecasts
- Reanalysis
- Observing SystemSimulation Experiments(OSSEs)

Surface Concentrations: Asia

Surface concentrations from EANET vs. MERRA-2 for 2001 – 2008

QFED: Quick Fire Emission Dataset

- Top-down algorithm based on MODIS Fire Radiative Power (AQUA/TERRA)
- FRP Emission factors tuned by means of inverse calculation based on MODIS AOD data
- Daily mean emissions, NRT
- Prescribed diurnal cycle
- In GEOS-5 BB emissions are deposited in the PBL

GEOS-5 Reanalysis

http://gmao.gsfc.nasa.gov/reanalysis

O.S.S.E

Observing System Simulation Experiment

Model-Based OSSE

- A framework for numerical experimentation in which observables are simulated from fields generated by an Earth system model, including a parameterized description of the observational error characteristics
- Simulations are performed in support of an exerimental goal

GEOS-5 Nature Run Data Portal

http://gmao.gsfc.nasa.gov/projects/G5NR

GEOS-5 Forecasts

http://gmao.gsfc.nasa.gov/forecasts

G5NR Data Portal

Documentation

Simulation Images, Animations, and Data

Highlights Images Get Data Documentation

DOCUMENTATION

- File Specification. This document has a comprehensive list of datasets available, as well as description of the horizontal and vertical grids.
- Data Access Guide. This wiki page has specific information on the location of our files and instructions on how to access from a variety of applications such as GrADS, Matlab, IDL or even from a C/Fortran program. Sample code is also provided.
- GEOS-5 Configuration. This document documents the particular configuration of the GEOS-5 earth system model used for the G5NR simulation. It includes an overview of the main parameterizations, boundary conditions and emissions files.
- G5NR Validation. This Technical Memorandum documentation on the scientific performance of the G5NR datasets. This is a required reading for understanding the strengths and limitations of the G5NR simulation and its applicability to a given application.